An Optimal Algorithm for Perfect Phylogeny Haplotyping

نویسندگان

  • Ravi Vijaya Satya
  • Amar Mukherjee
چکیده

Inferring haplotype data from genotype data is a crucial step in linking SNPs to human diseases. Given n genotypes over m SNP sites, the haplotype inference (HI) problem deals with finding a set of haplotypes so that each given genotype can be formed by a combining a pair of haplotypes from the set. The perfect phylogeny haplotyping (PPH) problem is one of the many computational approaches to the HI problem. Though it was conjectured that the complexity of the PPH problem was O(nm), the complexity of all the solutions presented until recently was O(nm (2)). In this paper, we make complete use of the column-ordering that was presented earlier and show that there must be some interdependencies among the pairwise relationships between SNP sites in order for the given genotypes to allow a perfect phylogeny. Based on these interdependencies, we introduce the FlexTree (flexible tree) data structure that represents all the pairwise relationships in O(m) space. The FlexTree data structure provides a compact representation of all the perfect phylogenies for the given set of genotypes. We also introduce an ordering of the genotypes that allows the genotypes to be added to the FlexTree sequentially. The column ordering, the FlexTree data structure, and the row ordering we introduce make the O(nm) OPPH algorithm possible. We present some results on simulated data which demonstrate that the OPPH algorithm performs quiet impressively when compared to the previous algorithms. The OPPH algorithm is one of the first O(nm) algorithms presented for the PPH problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Path Phylogeny Haplotyping with Missing Data Is Fixed-Parameter Tractable

Haplotyping via perfect phylogeny is a method for retrieving haplotypes from genotypes. Fast algorithms are known for computing perfect phylogenies from complete and error-free input instances—these instances can be organized as a genotype matrix whose rows are the genotypes and whose columns are the single nucleotide polymorphisms under consideration. Unfortunately, in the more realistic setti...

متن کامل

Efficient Computation of Template Matrices

The computation of template matrices is the bottleneck of simple algorithms for perfect phylogeny haplotyping and for perfect phylogeny under mutation and constrained recombination. The fastest algorithms known so far compute them in O(nm) time. In this paper, we describe an algorithm for computing template matrices in O(nm/ log(n)) time. We also present and discuss a conjecture that implies an...

متن کامل

Haplotyping with missing data via perfect path phylogenies

Computational methods for inferring haplotype information from genotype data are used in studying the association between genomic variation and medical condition. Recently, Gusfield proposed a haplotype inference method that is based on perfect phylogeny principles. A fundamental problem arises when one tries to apply this approach in the presence of missing genotype data, which is common in pr...

متن کامل

Incremental Haplotype Inference, Phylogeny, and Almost Bipartite Graphs∗

We address the combinatorial problem of inferring haplotypes in a population that forms a perfect phylogeny (PP) given a sample of genotypes. The problem is relevant because, in DNA sequencing, genotypes are easier to obtain than haplotyping by DNA sequencing. Since PP’s appear naturally and frequently on DNA sequences of restricted length, PP haplotyping is a favourable approach to facilitate ...

متن کامل

Computational Complexity of Perfect-Phylogeny-Related Haplotyping Problems

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. This problem, which has strong practical applications, can be approached using both statistical as well as combinatorial methods. While the most direct combinatorial approach, maximum parsimony, leads to NP-complete problems, the perfect phylogeny model proposed by Gusfi...

متن کامل

On the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model

Recent technologies for typing single nucleotide polymorphisms (SNPs) across a population are producing genome-wide genotype data for tens of thousands of SNP sites. The emergence of such large data sets underscores the importance of algorithms for large-scale haplotyping. Common haplotyping approaches first partition the SNPs into blocks of high linkage-disequilibrium, and then infer haplotype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2006